- Remove All
- Your shopping cart is currently empty
(+)-Cevimeline hydrochloride hemihydrate ((+)-SNI-2011), a potent muscarinic receptor agonist, shows promise as a therapeutic candidate for xerostomia in Sjogren's syndrome. It exhibits a broad pharmacological profile across various systems in animal models including mice, rats, guinea pigs, rabbits, and dogs. Metabolism studies using rat and dog liver microsomes reveal rapid absorption with peak plasma concentrations (Cmax) within one hour post-oral administration and a half-life (t1/2) between 0.4 to 1.1 hours. Bioavailability is 50% in rats and 30% in dogs. Metabolic analysis shows species-specific differences: rats produce S- and N-oxidized metabolites, while dogs produce only N-oxidized metabolites. Sex-based pharmacokinetic differences were noted in rats but not in dogs. In vitro studies indicate cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO) involvement in the sulfoxidation and N-oxidation of SNI-2011, with CYP2D and CYP3A mainly responsible for sulfoxidation in rat liver microsomes.
Pack Size | Price | Availability | Quantity |
---|---|---|---|
25 mg | $3,960 | 10-14 weeks |
Description | (+)-Cevimeline hydrochloride hemihydrate ((+)-SNI-2011), a potent muscarinic receptor agonist, shows promise as a therapeutic candidate for xerostomia in Sjogren's syndrome. It exhibits a broad pharmacological profile across various systems in animal models including mice, rats, guinea pigs, rabbits, and dogs. Metabolism studies using rat and dog liver microsomes reveal rapid absorption with peak plasma concentrations (Cmax) within one hour post-oral administration and a half-life (t1/2) between 0.4 to 1.1 hours. Bioavailability is 50% in rats and 30% in dogs. Metabolic analysis shows species-specific differences: rats produce S- and N-oxidized metabolites, while dogs produce only N-oxidized metabolites. Sex-based pharmacokinetic differences were noted in rats but not in dogs. In vitro studies indicate cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO) involvement in the sulfoxidation and N-oxidation of SNI-2011, with CYP2D and CYP3A mainly responsible for sulfoxidation in rat liver microsomes. |
Alias | (+)-SNI-2011, (+)-AF102B hydrochloride hemihydrate |
Molecular Weight | 244.78 |
Formula | C10H19ClNO1.5S |
Relative Density. | no data available |
Storage | Powder: -20°C for 3 years | In solvent: -80°C for 1 year | Shipping with blue ice. |
Copyright © 2015-2024 TargetMol Chemicals Inc. All Rights Reserved.